
2 Vol. 25, No. 2 ;login:

As I write this, security is front-page news because Yahoo.com,

Amazon.com, CNN.com, eBay.com, and others are under concerted denial-

of-service attack from terrorists whose motivations and identities are, at

present, unknown. As someone who runs a business, I can tell you how ter-

rifying it is to contemplate being shut down by someone you can’t identify

or block. This kind of thing is about as elegant as a drive-by shooting and

shows that, as a society, people couldn’t resist bringing the worst aspects of

“the real world” into cyberspace. I wonder if the perpetrators think it’s

funny. What motivates them? For that matter, what motivates the people

who developed and released the tools the attackers are using? And what

drives the virus writers? Come on, guys, it’s not cool – you’re hurting peo-

ple.

Once again, security analysts and network managers are being presented with an
extremely challenging problem that we really don’t know how to solve conclusively. It’s
going to cost the Internet and its users millions of dollars in wasted time, lost revenue,
and ulcers over the next few years. I’ve been happy, generally, with the media’s response
to this event, as compared to past problems. This time, at least, they are not saying it’s
being done by “brilliant” misunderstood “whiz kids” or anything like that. Perhaps the
hackers made a big mistake going after CNN.com – media’s “nudge-nudge-wink-wink”
attitude toward hacking has done a lot to make it seem sexy and cutting edge. Biting
the hand of the media is an error of judgment sure to get you slapped,
as many politicians have learned. Perhaps their irritating the media will help adjust the
press’s coverage. Fundamentally, these are social problems, not technological problems,
and are best solved by social means. The media has to take its part, since it is, arguably,
the “voice” of society. This kind of nonsense isn’t the work of “brilliant whiz kids”; it’s
the work of socially maladjusted losers.

Boundless Overruns
Lately, the problem of buffer overruns in code has become serious. It seems that virtu-
ally every application designed to work on a network has suffered some kind of buffer
overrun recently. If an application hasn’t, it’s probably just because the hackers haven’t
looked at it – yet. Obviously, it’s not a new problem, really – like many security prob-
lems, it’s one we’ve known about for a very long time. I guess circumstances have pretty
much conspired to let us ignore it for many years, but now the grace period is emphati-
cally over. In the early 1990s I wrote a couple of firewall products; recently, in order to
torture myself, I went back, pulled the source out of my archives, and did code reviews
of some modules. When I wrote them, I know I was trying to be pretty careful, but in
several places I was not careful enough. At least I tried, I suppose. What about the
developers who don’t know they need to be careful? What about the developers of
applications that aren’t believed to be security-critical? My guess is that the vast majori-
ty of networked applications are rife with security bugs.

What can we do about it, if anything? Recent flaws in “mission-critical” software seem
to point out just how little progress we have made in securing our critical code, yet
every day we field new applications, most of which were developed with only a cursory
thought to security. I suspect that, as the software market continues to heat up, the
environment will get worse, faster. We’re seeing start-ups going from zero to product
ship in months, and from product ship to installed bases of hundreds of thousands of
users in weeks. About a year ago, I had a scary realization:

Today’s toy is tomorrow’s critical business tool.

by Marcus J.
Ranum

Marcus J. Ranum is
CEO of Network
Flight Recorder, Inc.
He likes cats: they
are complex yet
manageable. When
he’s not working 10-
hour days he plays
console games and
pursues too many
hobbies for his own
good.

<mjr@nfr.net>

the network police
blotter

3April 2000 ;login: THE NETWORK POLICE BLOTTER ●

●

SE

C
U

RI
TY

| P
RO

G
RA

M
M

IN
G

| O
PE

N
SO

U
RC

E
| I

N
TE

RN
ETWe can’t predict which ones will be “big,” but a significant percentage of the buggy

crud that is being written today will become part of our “mission-critical infrastruc-
ture.” For example, lots of firewall administrators block instant-messenger–type pro-
grams because of various security concerns. I remember trying that when HTTP first
came out – who’d need that stuff? My prediction is that within a few years, one of those
online messenger programs will be an essential business tool, and people will be using
it to buy and sell stocks or broker mergers and acquisitions. Because of the huge legacy
installed base that will be in place by then, it’ll be too late to add security into the appli-
cation’s protocols. I now believe it is impossible to accomplish security in such an envi-
ronment – all we can do is struggle valiantly on the sharp end of the hook.

In order to make the situation improve we’ll need to somehow completely revamp the
way in which we develop software, publish it, and distribute it. We’ll also need social
change – the way we treat hackers and think about hacking is going to have to change.
Another step in the right direction would be to scrap most of our applications base and
replace our core software infrastructure with something simpler and better designed.
None of that is going to happen, possibly ever. I don’t want to contemplate the kind of
disaster we’d need in order to trigger the degree of social change that is necessary – it’ll
take some kind of massive “software Chernobyl” and a couple of iterations of overreac-
tion before we ever progress in the right direction.

That’s a kind of depressing view of the situation, I realize. I guess that the news about
the massive denial-of-service attacks has put me in a pretty negative frame of mind
about the state of security. This kind of nonsense cannot continue.

Some Suggestions
Let me try to be a bit more positive with some suggestions for simple things you can do
to help improve the state of computer security from the comfort of your workstation.
One is simple and has to do with bug fixes; the other is more of a management issue
and has to do with documentation and design.

One area I don’t think we’ve adequately tapped is intrusion detection in applications.
That’s because the only people who can meaningfully add application intrusion detec-
tion are the developers themselves. It’s such an obvious idea that I’m really kicking
myself for not thinking of it until recently; this is something we should have been pro-
moting for a long time. If a security flaw is identified in your code, don’t just put a
patch in place to fix the problem; put a patch in place that identifies attempts to trigger
the problem. Log the attempt and block it. If we all did this in our code, we’d begin to
collect extremely detailed information about who is trying to exploit specific vulnera-
bilities. This approach would also be pretty safe against false positives generated by
legitimate scanning tools – such tools typically don’t try to exploit the actual vulnera-
bility, but simply test for its existence. It’s free, cheap, utterly reliable intrusion detection
with no performance cost. About the only drawback I see to this idea is that some bod-
ies of code would be dramatically enlarged. Not coincidentally, a lot of them are already
hugely bloated – so what’d be the harm of adding a few thousand more lines of code to
a Web server, browser, or mail-transfer agent? There’d be a bit of a maintenance cost,
but it’s not too large.

Second, please stop making your applications identify themselves obviously over a net-
work. While it’s essential that protocol negotiations still work, it is not necessary to
announce what version of a particular server you are running. Right now, huge num-
bers of applications effectively paint a target on their backs by announcing to the world
at large, “Hello! I am whateverdV1.22!” Even the lowliest script kiddie can use such

The way we treat hackers and

think about hacking is going

to have to change.

4 Vol. 25, No. 2 ;login:

An interesting thing happens

when you hit a security-

illiterate person with a tool

that makes them realize how

often they are probed and

examined by hackers: they

get furious.

obvious targeting information to search rootshell.com for vulnerabilities. Without
identifying information, they’ll have to use more sophisticated techniques such as
stack-fingerprinting approaches applied to applications. That’ll be okay because when
someone starts fingerprinting your applications, that will be easier to detect (especially
from within the application) and is more clearly hostile action. Remember, the more
intrusive we can force probes to become, the easier they are to detect and the harder
they are to laugh off as “innocent curiosity.”

Imagine what would happen if a majority of applications were self-instrumented secu-
rity alarms. Within an hour of installing your new Web server, you would begin receiv-
ing notices from the server of all the attempts being launched against it. My guess is
that larger sites would get dozens of warnings a minute. The great part is that the hack-
ers wouldn’t really be able to tell if you were running a version of a server that was tat-
tling on them, or a vulnerable version. Let’s just make it a little harder for them, shall
we?

Of course, I have a stealthy agenda in proposing this concept: it would stun people if
they realized how often they come under attack. An interesting thing happens when
you hit a security-illiterate person with a tool that makes them realize how often they
are probed and examined by hackers: they get furious. If you’re careful about how you
do it, they don’t get mad at you, they get mad at the hacker, complain to their ISPs, the
police, the press, etc. That’s the level of attention and frustration that leads to “there
ought to be a law” thinking – a necessary part of the process of adding pain to cause a
backlash.

Another thing developers can do is document whether their applications are safe for
use in a privileged context. This is a minor point, but it might help. I’ve been amazed to
see developers employ tools that had huge security flaws as components of critical
applications. “But it comes with the system,” they cry when someone points out the
problem. That complaint is usually followed by “It’s too late now, we have to push this
into production and it already works.” No, grasshopper, it merely appears to work. I’d
like to see applications like ftp come with a warning label on them saying, in effect,
“Not for use over public networks.” We have to raise awareness of these constraints
before the point at which system developers decide what components they will use to
build their architectures. I am reminded of BSD’s approach to getting rid of the obso-
lete and evil gets() function call: they modified it to print a message to the screen when
the function was called: “WARNING: This program uses gets() which is insecure.”
Perhaps we need to have applications like ftp check and see if the destination is off the
local subnet and print a warning like: “WARNING: This program uses insecure net-
working and should not be used off your local subnet.” On the surface that seems like a
decent idea, except that, of course, virtually every application would be printing terrify-
ing warnings. Such warnings are more food for the eventual backlash.

One thing that’s always frustrated me is the relative ease with which these broken appli-
cations could be upgraded. The only thing stopping us is the Evil Demon of Backward
Compatibility, who grows stronger every day as tens of thousands of new users flock to
the Internet. Eventually, I believe we will need to slay the demon by scrapping whole
chunks of redundant protocols and layering them atop newer, better-designed ones. For
example SSL, with whatever warts it may possess, is still a much better protocol, securi-
ty-wise and in terms of port usage, than ftp. Someone could develop a new version of
“ftp” that had the same user interface but that used SSL as an underlying protocol.
Many users would never notice. The same could be done with telnet, rlogin, rsh, etc.,
etc. This would improve security not just in the obvious way (getting rid of passwords

5April 2000 ;login:

●

SE

C
U

RI
TY

| P
RO

G
RA

M
M

IN
G

| O
PE

N
SO

U
RC

E
| I

N
TE

RN
ETcrossing the Net in the clear) but by reducing the amount of redundant networking

code that can be implemented incorrectly. Perhaps this might be something the open
source movement could take on as part of general legacy code cleanup . . .

The Weather Sure Is Big Out
Well, I fear I may have rambled a bit. In my last column I promised that I’d try to keep
things more technical in this column. I hope I haven’t completely reneged on that
promise. From where I sit, I’m becoming convinced that security isn’t really a technical
problem – or, more precisely, that the technical component of security is vanishingly
small compared to the political, management, and financial components of the security
landscape. Large weather out; looks like it’s going to rain . . .

In the same vein as last column, I will propose another contest (prize will be a nifty
keen “Network Police” jacket with a T-shirt for the runner-up). The topic of this con-
test is “Where do packets go when they die?” Be brief.

